欧意交易所-OKX欧易全球主流交易平台(访问: hash.cyou 领取999USDT)
该【离心式冷水机组结构剖析图 】是由【青山代下】上传分享,文档一共【41】页,该文档可以免费在线阅读,需要了解更多关于【离心式冷水机组结构剖析图 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。:..目前用于中央空调的离心式冷水机组主要由离心制冷压缩机、主电动机、蒸发器(满液式卧式壳管式)、冷凝器(水冷式满液式卧式壳管式)、节流装置、压缩机入口能量调节机构、抽气回收装置、润滑油系统、安全保护装置、主电动机喷液蒸发冷却系统、油回收装置及微电脑控制系统等组成,并共用底座。下面就为大家一一展示这些离心机组结构剖析,对它不了解的朋友可以进来看看哦,下面有连载,希望对各位有帮助!离心机压缩机型式结构一、离心式冷水机组前视图、后视图1)前视图:..2)后视图3)三级离心结构图:..二、:..:..:..:..:1)叶轮方面:a)闭式叶轮的稳定工况范围比半开式叶轮的稳定工况范围要窄;b)小流量区间内,即:部分负荷情况下,半开式叶轮的性能优于闭式叶轮的性能;c)两种形式叶轮内部都存在回流区域,半开式叶轮内部的回流区域较少。2)电机方面:a)闭式电机散热于系统中,增加制冷系统能耗3%,闭式电机在冷媒中旋转,阻力大,增加动力系统能耗3%。b)封闭式结构设计,电机处于腔体内,具有良好的运转环境;避免开放式电机因壳体散热装置直接暴露在空气中脏堵而影响其稳定性;封闭式电机均有内置式热保护系统,可保证电机的运行安全(而开放式电机采用仅依靠电流过载来保护电机,可靠性较低);封闭式结构设计,电机采用制冷剂喷液冷却,工作温度低,使用寿命长;(而开放式电机处于机房内,电机的工作环境温度较高)。:..,第37页3可靠性=、实际能效比及效率衰减:..开启电机机房放热公式:Q=Ne*(1-N)Ne---压缩机输入功率N---电机效率离心式冷水机组结构剖析(连载2-压缩机结构及冷却循环)继续更新啦!连载2:)开启式传动装置:..)半封闭式传动装置常工作。无增速齿轮等传动装置可以降低故障,提高机组部分负荷效率。-开式与闭式1)三元流叶轮设计(南社百科有名词解释):..)闭式与半开式叶轮比较闭式叶轮闭式叶轮往往通过制作标准模具铸造一次加工成型,模具制作成本一次性投资高,后期制造成本小,一旦模不利于及时更新型线;与精密加工相比,铸造精度有限,气流摩擦力大,效率低;闭式叶轮的结构形式很难铸造线来满足设计需要。:..来改进型线设计;半开式叶轮加工精度较高,气流摩擦损失小,压缩机效率高;半开式叶轮的结构形式也决定了线能在现实制造技术中得以实现。,压缩机剖面图:..,气流量由导叶的开启度而定。由于压缩机抽取制冷剂减低了蒸使蒸发器里剩余的制冷剂在相对低的温度(一般为3到6℃)沸腾蒸发。制冷剂气化吸取传热管内循环水的热量得到空调或工业处理所需的冷水。吸取循环水中的热量之后,制冷剂蒸气被吸入压缩机压缩,压缩后制冷剂温度缩机排出温度可达37到40℃,进入冷凝器进行冷凝。温度相对较低的冷却水(18~32℃)流经冷凝器铜管,带走气态制冷剂的热量,使之冷凝成液态。:..态制冷剂进一步冷却。闪蒸制冷剂气体在冷却水的铜管外再凝结成液体,流至过冷室与蒸发器之间的节流阀。在一只线性浮动阀(不同厂商不同)形成一道液体密封,防止过冷室的蒸汽进入蒸发器。液体制冷剂流过此节流装其中一部分由于蒸发器侧压力较低而闪蒸成气体,在闪蒸过程中带走剩余液体的热量,制冷剂回到低温低压状态又开始制冷循环:..电机/润滑油冷却循环电机和润滑油由来自冷凝器筒身底部的过冷液态制冷剂冷却。由于压缩机运行保持的压力差,使制冷剂不剂流过一只隔离阀,一只过滤器,一只视镜/湿度指示器之后,分流至电机冷却和油冷却系统。到电机的这一路制只限流孔流进电机。电机冷却管路的支路上还有一只限流孔和一只电磁阀,电机需要冷却时,电磁阀就会开启。制冷剂就流到喷淋嘴上,喷淋整个电机。制冷剂集中到电机室的底部排放回到蒸发器。回气管线上的一只限流孔的压力高于蒸发器油箱的压力。电机温度由埋在定子绕组内的温度传感器测取。电机绕组温度高于电机预先设定度点时,℃,就会使进气导叶关闭。如果温度高于安全极限,压缩机就会:..另一路流经油冷却系统的制冷剂量由一只热力膨胀阀调节。旁通过热力膨胀阀的制冷剂经一只限流孔始终保流量。膨胀阀上的温包感应冷却后流进压缩机到轴承的油温。由膨胀阀调节进油/制冷剂板式油冷却器的制冷量离开油冷却器后返回到蒸发器。:..油泵、油过滤器和油冷却器构成一套润滑系统,位于压缩机-电机组件齿轮传动箱铸件一端。润滑油由油泵压进过滤器组件去除杂质,送至油冷却器,冷却到适当的温度,然后分两路:一部分油流到齿承;余下的流到电机轴承。油进入齿轮箱下方的油箱完成润滑循环。关于备用油槽:在主机启动之前、运行期间和逐渐停转阶段,润滑油由变频驱动式油泵压入各轴承、齿轮在压缩机顶部有一个重力供油式贮油槽,当电源发生故障机器逐渐停转时,由它提供润滑。另一个贮油槽与压缩机分开,它包括一个浸入式油泵、2HP油泵电机和1个浸入式油加热器。恒温控制的来除去油中的制冷剂。润滑油经一个外装的1/2微米油过滤器过滤,过滤芯子可以更换,并配有检修阀。润滑油在进入压缩机之制冷剂冷却的油冷却器,无需现场接水管。油冷却器的油侧装有检修阀。(,下载次数:19):..点评离心式冷水机组结构剖析(连载3-喘振的形成与负荷调节)本帖最后由adingkgb于2013-6-2811:00编辑连载3:喘振的形成与负荷调节四、喘振的形成喘振是离心式压缩机所固有的特性,当负荷降低压缩机的排气量小于某一极限点时,压缩机叶轮和扩压器流产生严重的气流旋转脱离,使气体流动严重恶化,压缩机出口压力低于冷凝器中的压力,气流倒流向压缩机,一力高于冷凝压力为止,这时倒流停止,压缩机正常工作;而较低的负荷使压缩机的排量又慢慢减小气体又发生倒而复始,在系统中产生了周期性的气流振荡现象,称为喘振。喘振发生的时候在机房可听到间断性的较强噪音。:..负荷和压比是喘振发生的直接原因,叶轮及扩压器根据满负荷进行设计,如果满负荷吸气量为Qmax,排气S,满负荷排气速度为:Vmax=Qmax/S气体动能:Emax=m(Vmax)2如果机组负荷下降,压缩机吸气量Q也降低,即QQmax,压缩机排气口截面积仍为S,气体排气速度气体动能:E=mV2Emax,经过扩压腔,由于动能降低,压力能也降低,当排气压力冷凝压力,气流倒流回发生。:..叶轮中的旋转脱离及扩压通道中边界层的分离:扩压器流道内气体的流动,来自叶轮对气体所作功转变成的动能,边界层内的气体流动主要靠主流中传递的面的阻力。当气体流量减少,动能减少到不能克服边界层的压力差继续前行时,就产生旋涡和倒流,使气流边界:..五、:..。:..:可以精确地调节压缩机排气口截面积,使排气速率保持恒定。旋转扩压器:通过内环的转面积和气流方向,改善部分负荷运行性能并提高运行稳定性。点评离心式冷水机组结构剖析(续载4、5、6!):..本帖最后由xinxin_renlei于2013-6-2714:08编辑估算失策,前一个帖子只占了两层,貌似不够,好吧,努力把剩下的几篇集中到这个帖子下,离心式冷水机组结构剖析(连载4-节流装置)六、节流装置1)先导式热力膨胀阀感知蒸发器过热度,℃,当负荷在10-100%范围内变化时,均能高效运行。其工作原理降低,制冷剂蒸发量减少;壳内蒸发趋于平缓,换热强度减弱,℃,蒸发器面上升。2)复式固定孔板:..:..)线)可调节孔板采用可调节孔板进行节流,节流过程中压力损失小,调节速度快,精度高,有效提高了机组的效率;微电脑液位并自动调节孔板开度;当负荷在10-100%范围内变化时,均能高效运行。5)电子膨胀阀:..6)小结:热力膨胀阀:按吸气过热度的变化,对机组的负荷进行精密的调节,即精密的调节制冷剂流量,使机组在部有更佳的效率和机组运行的可靠性。热敏元件易老化失效,影响控制精度,需定期检修更换。浮球阀节流:有泄靠性差,同时调节部件较多,设备的故障率高;通过冷凝器中液位的变化进行供液调节,不能直接反映系统冷量导致机组的调节性能及可靠性均较差。可变孔板:可以保持冷凝器与蒸发器内的最佳的制冷剂液位,调节效果好但在低负荷时效率变差,特别是在高蒸发器出水温度和低冷凝器进水温度时更加明显。回顾下,节流装置在系统的环节:..热气旁通、热回收)5:热气旁通、热回收热气旁通是等流量控制法,主要是为了防止机组喘振。当机组将要进入喘振工况时打开热气旁通阀来改善达到对机组的喘振保护。它通过热气旁通阀使冷凝器中的高压气体进到蒸发器中。降低冷凝器的压力并提高蒸发降低了压缩机的压头,同时增加了压缩机的流量,以此改善工况来防止喘振。对于采用热气旁通阀的机组,控制开热气旁通阀来减小压差、增大流量。采用这种控制逻辑,喘振保护线的设定就非常重要。如果喘振保护线设置去保护作用,而喘振保护线设置太低,则在正常的工况下就会限制负载或打开热气旁通阀。喘振保护线的高负荷点和低负荷点在出厂时有预设值,通常是以标准工况来设定的。但现场情况同设计的标准工所以在现场要根据情况进行修正,修正一般是通过反复的试验来进行的。最后的设定点应该能对喘振进行保护,地打开热气旁通阀而影响机组的正常运行。:..“制冷”并不仅仅是一个简单的降温过程,与自然冷却相比,“制冷”的过程实际上是通过消耗一定的外能、热能、太阳能等),把热量从“低温热源”转移到“高温热源”的过程。因此,我们通过“制冷”把载冷剂的同时,加上外功转化的热量,必然会产生比冷量更大的热量。目前绝大部分的空调设计,这部分热量不但没有消耗水泵及风机动力,把热量通过冷凝器由冷却介质(水、空气等)带走。我们如果能够把这部分热量利用起来现单向能耗,双向输出,大大提高制冷机组的能源利用率,还可以节约冷却系统的能耗。:..冷水水源直接进入热水器套管入水口,通过逆流循环吸收经过压缩后的高温高压的制冷剂释放不但可以提高冷凝系统的效率又达到加热冷水的目的。加热后的热水(55℃~60℃)直接进贮保温水箱,以备各之用。由于离心压缩机特性,高温热回收会造成机组压差增大时,叶轮效率下降,在部分负荷情况下,更易造成:..此离心式冷水机组热回收出水温度一般不超过45℃。热回收控制离心式冷水机组结构剖析(连载6-两器、润滑及其他系统部件)连载6:两器、润滑及其他系统部件回顾下,离心机组流程图:..九、蒸发器、::..满液式蒸发器,相对于同一压缩机,可以提供更低的传热温差,℃;从而获得更高的制冷量和吸气过滤:防止压缩机带液压缩;液体分配器:低负荷时制冷剂液体分配均匀。均液板——使进入蒸发器的液态制冷剂均匀的分布在蒸发器的低部,减缓流速。均气板(挡板)——减缓气态制冷剂进入吸气口速率,再者用于气液混合物中液态制冷剂分离,避免机组带降膜式:工作方式为制冷剂通过换热器顶部的特殊设计分配器在压差的作用下均匀的喷淋到蒸发器内的高制冷剂在换热管上形成一层薄薄的冷剂液膜,吸收管内的热量而蒸发,蒸发后的冷剂蒸汽沿筒体两侧的上升通道顶部,而不会与下落的制冷剂液体形成冲击,使换热效率达到最高,可减少换热管的数量,减少蒸发器的体积及注量。降膜式蒸发器具有极好的换热性能,特别在部分负荷情况下。主要表现在两方面:充分利用了所有高效传面积,并根据降膜式蒸发器的结构和传热方式选择最适合的翅型换热管,以提高换热效率;另一方面蒸发压力较蒸发器中液体的静液柱使底部饱和蒸发温度升高(局部饱和压力升高导致饱和温度升高),传热温差减小,导致传降膜式蒸发则不出现这种情况。:..:一般在冷凝器内增加一些配置,如:过冷器:让经过冷凝器的制冷剂汽液体过冷,提高机组效率;防护板:速气流对换热管的冲击,并均分气流;支撑板涨管:防止铜管震动磨损。均气板——将压缩机的高压排气均匀的分布的冷凝器的顶部,同时减缓气流的速度,是气态制冷剂在冷凝器:..凝成液态制冷剂。均液板——使冷凝后的液态制冷剂能缓慢而稳定的进入冷凝器的出液管,同时使制冷剂有效的过冷。十、:在蒸发器与压缩机之间的回油管并联两路:引射泵回油和压差回油,前者用于机组启动时压由电磁阀控制;后者用于机组稳定运行时。,可防止包括电网大面积停电在内的任何意外状态;一旦电力中断,紧急油装置将保证供给润滑油;相比继电器供油模式,可确保突然断电情况下的紧急供油;:..::..:..十一、压力传感器、温度传感器、高压开关、:..:..